
Giving suggestions to Misspelled Words:

An Application of Nearest Neighbor Search on Strings

(Paper for CSE 203: Prof. Russell Impagliazzo)

Dustin Boswell (dboswell [at] cs ucsd edu)

March 24, 2004

1 Introduction - The Nearest Neighbor Problem

We have a database X = {x1 . . . xn} where each element xi is from some universe U . There is also
a distance function d : U × U 7→ R+ that computes a non-negative distance between any pair of
elements. Given a query q ∈ U , the Nearest-Neighbor Search task is to find one or more xi ∈ X
that are nearest neighbors. Different variants include:

NN(q) = arg min
x∈X

d(q, x) find one nearest neighbor

kNN(q, k) = C ⊂ X, |C| = k, ∀x ∈ C, y 6∈ C : d(q, x) ≤ d(q, y) find k nearest neighbors
rNN(q, r) = C ⊂ X, C = {x : d(q, x) ≤ r} find neighbors within radius r

The brute-force solution to each of these problems is to scan through X and compute d(q, x) for all
x ∈ X. Instead, we are interested in techniques that require fewer than n distance computations.
To do this, X will have to be preprocessed so that at query-time fewer computations are needed.

2 The Special Case of Metric Spaces

In the very special case when U is a fixed D−dimensional vector space (and d() is usually a
Euclidean distance), there are many specialized techniques such as kd-trees. Unfortunately, most
of these techniques do not scale well to large dimensions. Moreover, certain data types like strings
are not naturally represented by fixed-dimensional vectors. Hence it is often useful to work in a
general metric space, where the only thing assumed is that the distance function d() is a metric:

• d(xi, xj) = 0 ⇐⇒ xi = xj

• d(xi, xj) = d(xj , xi) symmetry

• d(x, z) ≤ d(x, y) + d(y, z) triangle inequality

In this paper we will review three common data structures for the nearest neighbor problem in
general metric spaces, and compare their performance on a dataset of 100,000 words, where the
intended application is to give suggestions to a misspelled word.

3 Spelling Correction

We have a “dictionary” (X) of words, and for a given query word q would like to find other words in
X whose spelling is similar to q. (While front-end applications only present a handful of respelling
suggestions, the “candidate list” is often much larger; this paper does not address the second process
of ranking and narrowing the candidate list.) In our experiments we used a set of 100,000 words
taken from various corpora and internet sources. While it contains many misspelled tokens itself,
we used it (rather than a typical 10,000 word dictionary) to test performance on large data sets.
Also, “respelling” is not limited to natural words - these techniques could be used to find file names
or url’s.

The next step is to define a distance measure between strings. The typical metric used is the edit
distance: the minimum number of insertions and deletions required to change one string into the
other. One variation is to allow “change” edits (which has the effect of charging only 1 edit for an

1

insert & delete to the same location). Another is to allow “transpositions” (swapping two adjacent
characters in a string). While not completely obvious, all of these edit distances are in fact metrics.

For our experiments we chose the edit distance to include changes and transpositions as single
operations. (This distance is more natural for the task of misspellings. Unfortunately, it brings all
strings “closer together” which will make the task more difficult.) We also assume that the number
of edits needed to correct a word is proportional to the length of that string, and that at most a
third of the characters need changing. And so we define our nearest-neighbor search problem as:

rNN(q) = { Find all strings in X within edit distance of r =
⌈
|q|
3

⌉
}

4 Nearest Neighbor Search Techniques

We will review three common data structures used for nearest neighbor search in metric spaces.
All of them make heavy use of the triangle inequality and represent the dataset as a tree, where
during a search, branches can be completely eliminated based on previous distance calculations.

4.1 Burkhard-Keller Tree’s (BKT)

This technique was introduced in [BK73]. A random element x∗ ∈ X is chosen as the root of the
tree. The other elements in X − x∗ are partitioned into sets X1, X2, . . . Xdmax where Xi = {x :
d(x∗, x) = i}. (Note: this assumes that the distance function is discrete and bounded, which is
true for edit distance assuming the maximum string length is bounded.) For each Xi a branch is
created from x∗ to the BKT subtree (recursively built) on Xi.

A search rNN(q, r) proceeds as follows:

Compute dq = d(q, x∗).
If dq ≤ r : output x∗

For each i in the range [dq − r, dq + r]:
Recursively search Xi

q r

x∗

dq

X1 X2 X3

[The figure shows a visual example of how search proceeds. We are searching for any points within
the shaded region. Since the distance function is discrete, all of the points live on concentric rings,
in terms of their distance from the root x∗. In this case, we can exclude X1 immediately, but X2

and X3 must be searched. The exclusion of branches outside the range [dq − r, dq + r] is based on
the triangle inequality.]

BKT’s work most efficiently when the set {d(x∗, x′) : x′ ∈ X − x∗} is “spread out” so that many
branches can be eliminated during a search. Accordingly, constructing subtrees by selecting roots
x∗ at random may not be the best strategy. It may improve performance to sample different roots
and select the root with the highest estimated variance σ2(d(x∗, x′)).

2

4.2 Vantage Point Trees (VPT)

The VPT was presented in [Yia93]. Like BKT’s, a random element x∗ ∈ X is selected as the root
node. The other elements are partitioned into m equal-sized groups X1, . . . Xm where X1 contains
the closest |X|/m items, X2 contains the next |X|/m closest, etc... and Xm contains the |X|/m
furthest elements from x∗. (m is a small fixed parameter. We will say VPTm when needed. Also,
note that in the event of ties or rounding issues, each of the Xi won’t necessarily be the same size.)
A VPT is recursively built from each branch Xi.

For each of the subtrees Xi of a node x∗, we compute the closest and furthest distance d(x∗, x′ ∈ Xi).
That is, for i = 1 . . .m, we compute the pair dmini = min

x′∈Xi

(d(x∗, x′)) , dmaxi = max
x′∈Xi

(d(x∗, x′)).

(Naturally, they have the relation dmin1 ≤ dmax1 < dmin2 ≤ dmax2) These values will help
us prune branches during a search.

A search rNN(q, r) proceeds as follows:

Compute dq = d(q, x∗).
If dq ≤ r : output x∗

For each i = 1 . . .m:
If [dmini, dmaxi] intersects [dq − r, dq + r]:
Recursively search Xi

X3X2X1
x∗

q r

dq

[For VPT’s each of the Xi is a set of points that fall within a distance region [dmini, dmaxi] from
x∗. VPT’s are designed so that the number of points in each region is roughly the same. In the
case shown, we can exclude X1 since it falls entirely outside of q’s radius. X2 and X3 must be
searched.]

Like BKT’s, performance may be improved by constructing the tree with roots for which
σ2(d(x∗, x′ ∈ X − x∗)) is large.

Notice that in the limit as m gets large, the sets Xi will only contain elements that are the same
distance from x∗. That is, we can say VPT∞ ≡ BKT.

4.3 BiSector Trees (BST)

Bisector Trees were proposed in [KM83]. In this tree, there are m (typically 2) elements (x∗1 . . . x∗m)
associated with a root node. The rest of the elements are partitioned into sets X1 . . . Xm where Xi

is the set of elements closest to x∗i . Similar to VPT’s, a pair dmini = min
x′∈Xi

(d(x∗i , x
′)) ,

dmaxi = max
x′∈Xi

(d(x∗i , x
′)) is computed for each i. Again, a BST is recursively built for each Xi.

Searching is similar to VPT’s:

3

For each i = 1 . . .m:
Compute dqi = d(q, x∗i).
If dqi ≤ r : output x∗i .

For each i = 1 . . .m:
If [dmini, dmaxi] intersects [dqi − r, dqi + r]:
Recursively search Xi

X3X2

X1
x∗1

x∗2 x∗3

q r

dq1

dq2 dq3

[For BST’s, there are multiple x∗i at a node, and each dqi is computed. In the figure shown,
dmin1 = 0, so it is a “closed donut”. Again, we can exclude X1 but not X2 or X3.]

Ideally the “representatives” x∗1 . . . x∗m would each be the center of some tight cluster, so that the
“radii” dmaxi are small (this increases the likelihood that an Xi can be pruned from the search).
Accordingly, it may reduce query-time if the sets x∗1 . . . x∗m are chosen such that

∑
dmaxi ∗ |Xi|

is low. This favors groupings with small radii (so that the likelihood of recursing to it is small)
and small population (so that the cost of recursing there is small). Admittedly, this formula is an
ad-hoc proposal of this author. However, optimizing the set of roots is a research problem in its
own, so we don’t address it further.

4.4 Monotonous Bisector Trees (MBST)

One variation on BST’s is to have each x∗i be a parent in the construction of its subtree Xi. Hence
the tree is “monotonous” since when a parent x∗i is introduced, it is repeated in its child’s subtree,
and that child’s subtree etc... This has the drawback that space is wasted. On the other hand,
there are two benefits. First, if distance calculations are properly cached, at a given node we only
need to compute m− 1 new distance calculations (since one of the distances was already computed
at the node above). Second, when an x∗i acts as a root again for the subset Xi, its radius dmax
can only get smaller. And as we mentioned before, smaller dmaxi lead to more pruning.

5 Experiments

We gathered a set (X) of 100,000 words from dictionaries, and common words found on the internet
(mostly proper nouns).

We then constructed 10 random instances for each of the following trees:

• BKT

• VPT2, VPT4, VPT16

• BST2, BST4, BST16

• MBST2, MBST4, MBST16

We then constructed a set of 50 test queries as follows: select a random word q from the set X. For
each letter in q, with probability 1/5 we changed the letter to a random letter of the alphabet. Since
our “search radius” is |q|/3, the original word q will typically be in the search results - although
this isn’t necessary, it does make the experiment as realistic as possible.

For each query, we performed the rNN(q) search on all data structures and measured:

4

• the number of results found near q

• the number of distance calculations performed during the search

The number of results found was the same for all trees (as they should be if they are correct). The
number of distance calculations is the performance metric - smaller is better. We also measured the
CPU-time for each query - as expected, the edit-distance calculation (an O(nm) time procedure
for strings of length n and m) dominated the search time. For brevity, we omit the CPU-time (but
it is equal to about 10µs per distance calculation).

Data Structure # distance evals (avg.)
BKT 42319
VPT2 47124
VPT4 43845
VPT16 42626
BST2 71735
BST4 68019
BST16 69737
MBST2 50459
MBST4 54637
MBST16 63909

Figure 1: The table shows the average number of distance evaluations used for a query on a given
tree (averaged over the 10 instances of that tree, and over 50 queries). The average query had 92
results. There were 100,000 words in the data set.

6 Conclusions

Searching for similar strings is a difficult problem in the general metric setting. The triangle
inequality (which is used heavily in all the methods presented here) isn’t as useful as one would
hope. All the methods shown start by computing the distance from the query to a “root string”
(dq). Typically, this value is about dq = 8 or so. The search procedure then explores strings that
are in the range [dq − r, dq + r]. And since r is typically 3, this results in exploring strings in the
range [5, 11] from the root string. Unfortunately, this does not eliminate many strings at all. (See
figure 2 and 3 for word length and edit distance histograms for our dataset.)

Of the methods shown, there are some clear observations. The variant of BST’s called monotonous
BST’s (MBST’s) clearly outperformed regular BST’s for this task. However, both of these per-
formed worse than BKT’s and VPT’s.

It is interesting to note that for VPT’s, increasing the “branch-out factor” bettered performance.
The BKT performed similarly to the highest-degree VPT - in keeping with our realization that as
the degree gets infinite, a VPT becomes a BKT.

However, even the best of the methods performed poorly - performing distance calculations on
almost half of the dataset. It is the opinion of this author that methods that rely only on the
distance function and the triangle inequality will never perform as well as string-specific methods.
(The author has performed other experiments with string-specific methods that outperform these
methods by a factor of 20 or more.)

5

Word Length Distribution

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Word Length

Fr
eq

ue
nc

y

Edit Distance Histogram (over pairs of words)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Edit Distance

R
el

at
iv

e
Fr

eq
ue

nc
y

One final mention is that all of the trees were built using random roots during construction. As
mentioned previously, all of the trees would benefit from sampling different roots and using ones
that best meet some sort of “good root” criteria. Unfortunately, BST’s and VPT’s are different
structures that would require different “good root” criteria, and the results would be highly depen-
dent on how they were implemented and how much extra CPU-time was allowed for constructing
these trees. For this reason, we opted to test the pure randomized versions only.

6

References

[BCMW94] R. A. Baeza-Yates, W. Cunto, U. Manber, and S. Wu. Proximity matching using fixed-queries
trees. In M. Crochemore and D. Gusfield, editors, Proceedings of the 5th Annual Symposium on
Combinatorial Pattern Matching, pages 198–212, Asilomar, CA, 1994. Springer-Verlag, Berlin.

[BK73] W. A. Burkhard and R. M. Keller. Some approaches to best-match file searching. Commun.
ACM, 16(4):230–236, 1973.

[Bri95] Sergey Brin. Near neighbor search in large metric spaces. In The VLDB Journal, pages 574–584,
1995.

[CMBY99] E. Ch’avez, J. Marroqu’in, and R. Baeza-Yates. Spaghettis: an array based algorithm for
similarity queries in metric spaces, 1999.

[CNBYM01] Edgar Chavez, Gonzalo Navarro, Ricardo A. Baeza-Yates, and Jose L. Marroquin. Searching
in metric spaces. ACM Computing Surveys, 33(3):273–321, 2001.

[HS03] Gisli R. Hjaltason and Hanan Samet. Index-driven similarity search in metric spaces. ACM
Trans. Database Syst., 28(4):517–580, 2003.

[KM83] I. Kalantari and G. Mcdonald. A data structure and an algorithm for recognizing nearest
neighbours. IEEE Transactions on Software Engineering, SE-9:631–634, September 1983.

[Yia93] Yianilos. Data structures and algorithms for nearest neighbor search in general metric spaces.
In SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference on Theoretical and
Experimental Analysis of Discrete Algorithms), 1993.

7

